Learning, Detecting and Localizing 3D Object Classes from Arbitrary Viewpoints

Matthew Toews and Tal Arbel

Centre for Intelligent Machines McGill University, Montreal, Canada

ICCV 3DRR 2007

Overview

- Visual object classes
- Related work
 - Invariant features
 - Probabilistic modeling
- Modeling viewpoint
 - Multi-view
 - Viewpoint-invariant
 - An optimal viewpoint-invariant model

Visual Object Classes

- An object class
 - A set of visually similar objects

- e.g. cars, faces,...

Visual Object Classes

- · Problem
 - Learn appearance from natural imagery
 - Detect and localize new instances

Challenges

- Nuisance parameters
 - Illumination changes
 - In-plane geometrical deformations
 - Partial occlusion
 - Intra-class variation
 - In-depth geometrical deformations (viewpoint variation)
- · Generalization
- · Computational efficiency

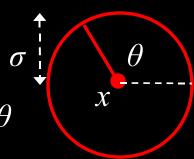
Related Work

- · Local invariant image features
 - Salient image characteristics
- Probabilistic modeling
 - Describe appearance in terms image features and probability theory

Local Invariant Image Features

Geometry

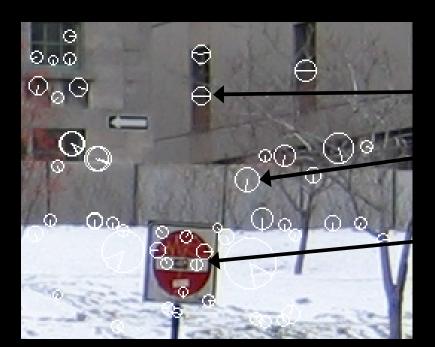
- Location x
- •Orientation θ
- •Scale σ

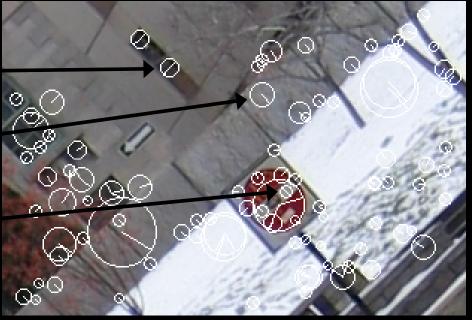


Appearance

- Image intensity information
- •I.e. Pixels, edges

SIFT: Scale-invariant Feature Transform, Lowe 2004





Local Invariant Image Features

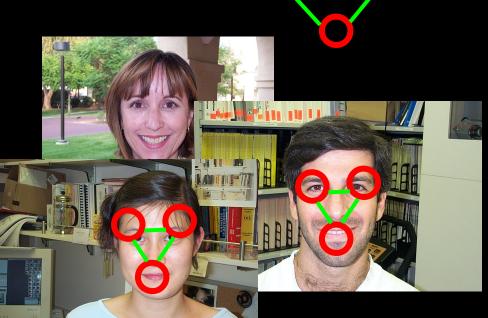
Address:

- Nuisance parameters
 - Illumination, in-plane geometrical variation, occlusion
- Efficiency
- Generalization
- Do not address:
 - Intra-class variation
 - Viewpoint variation

Probabilistic Models

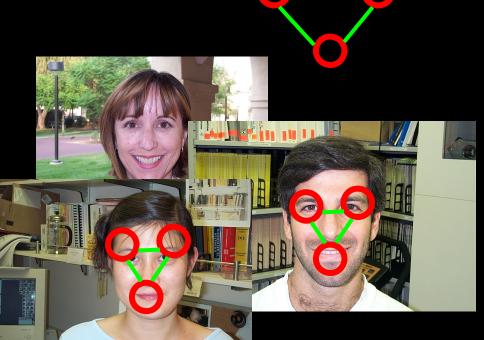
- Relate local features within a geometrical reference frame
 - e.g. constellations, bounding boxes...

Fergus et al. 2006, ...



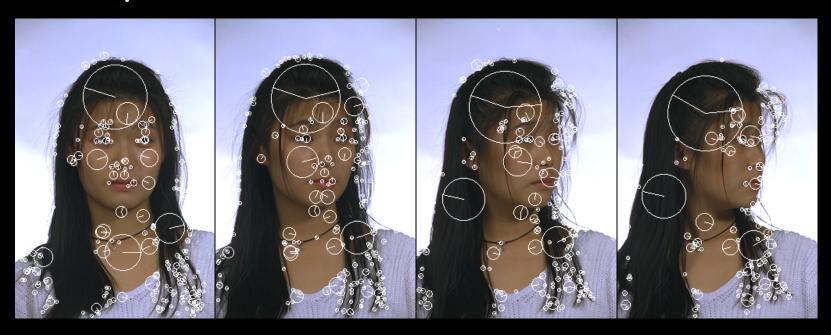
Probabilistic Models

- · Address:
 - Intra-class variation
- Challenges:
 - Viewpoint variation



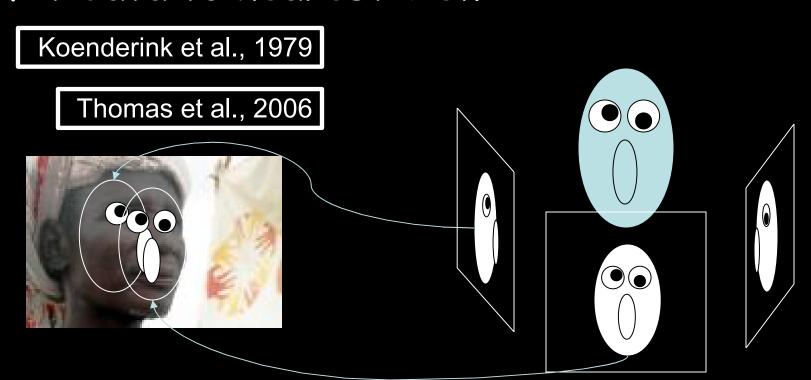
Observation

 Features persist over a range of viewpoint.



Probabilistic Models: Multi-view

- · Multiple single-view models
- · Model viewpoint variable explicitly
- Fit data to nearest view



Multi-view: Difficulties

· Viewpoint variable: learning, sampling...

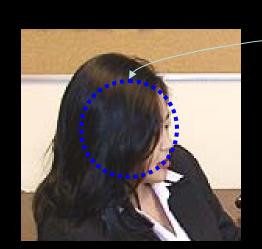
Viewpoint-invariant Model

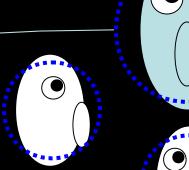
- · Model independent of viewpoint
- · Viewpoint invariant reference frame
 - i.e. a perspective invariant

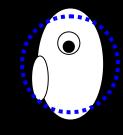
Beiderman, 1987

Infer frame in image

Toews & Arbel, 2006





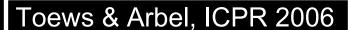


Viewpoint-invariance: Advantage

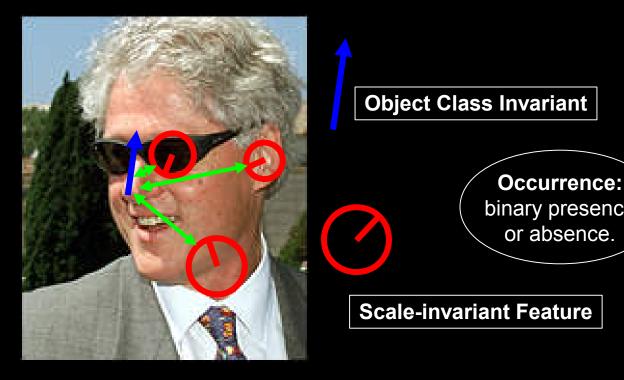
· Simplicity: no viewpoint variable

The Object Class Invariant (OCI)

- A geometrical reference frame that is:
 - 1) Uniquely defined for each pattern/object class instance.
 - 2) Invariant to the geometrical transform arising from the imaging process (perspective projection).



Object Class Invariant Modeling



Object Class Invariant

 $o: \{o^b, o^g\}$

binary presence or absence.

Geometry: location, scale, orientation.

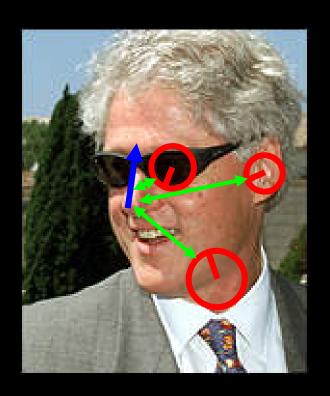
 $m_i: \{m_i^{\overline{b}}, m_i^{\overline{g}}, \overline{m_i^{\overline{a}}}\}$

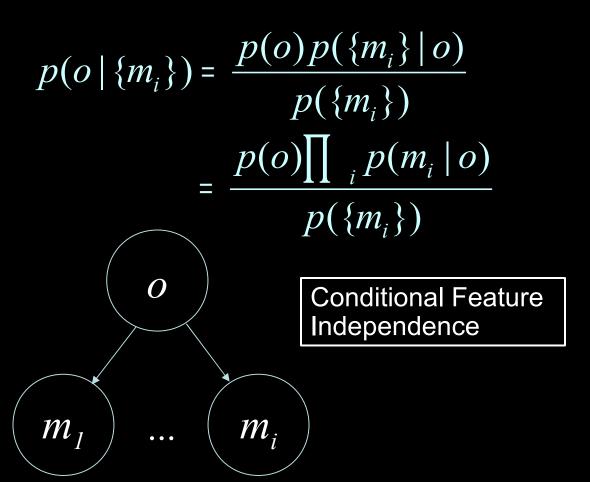
Transform relating feature and OCI geometries:

$$t_i: m_i^g \rightarrow o^g, o^g = t_i(m_i)$$

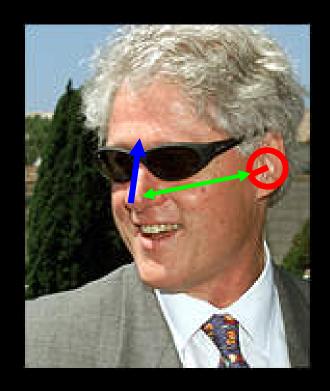
Appearance: derivative histograms. Note: the OCI is unobservable, and has no appearance!

OCI Model

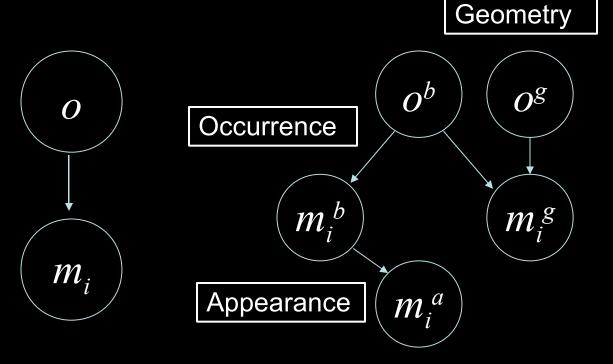




OCI Model

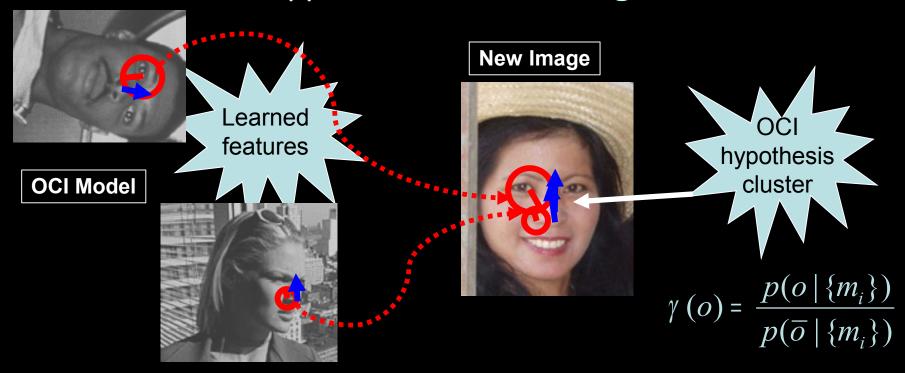


$$p(m_i | o) = p(m_i^a | m_i^b) p(m_i^b | o^b) p(m_i^g | o^b, o^g)$$



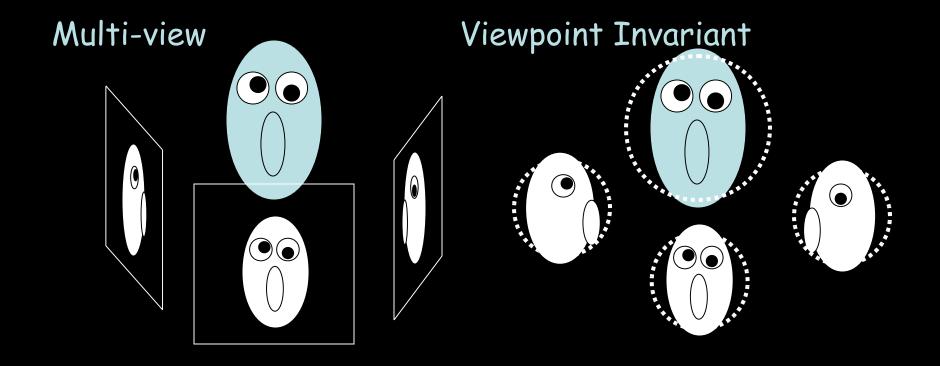
OCI Model Fitting

- · Identifying OCI instance in new image
 - Probabilistic voting
 - Robust hypothesis clustering



Multi-view or Viewpoint-Invariant?

· Which to use?

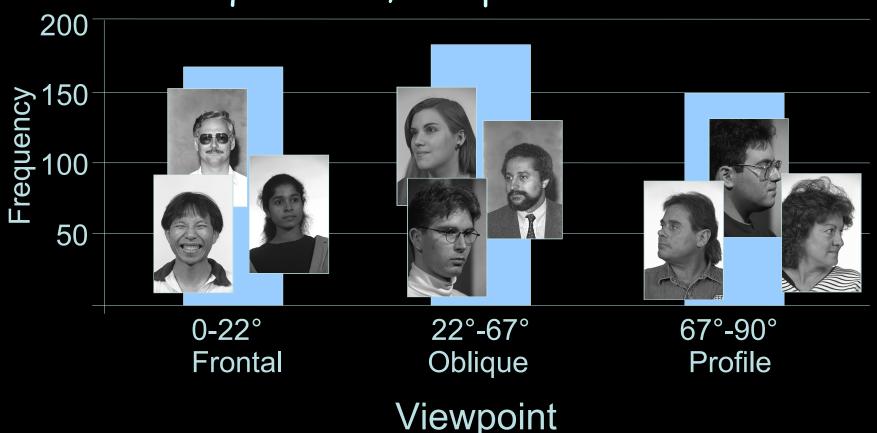


Methodology

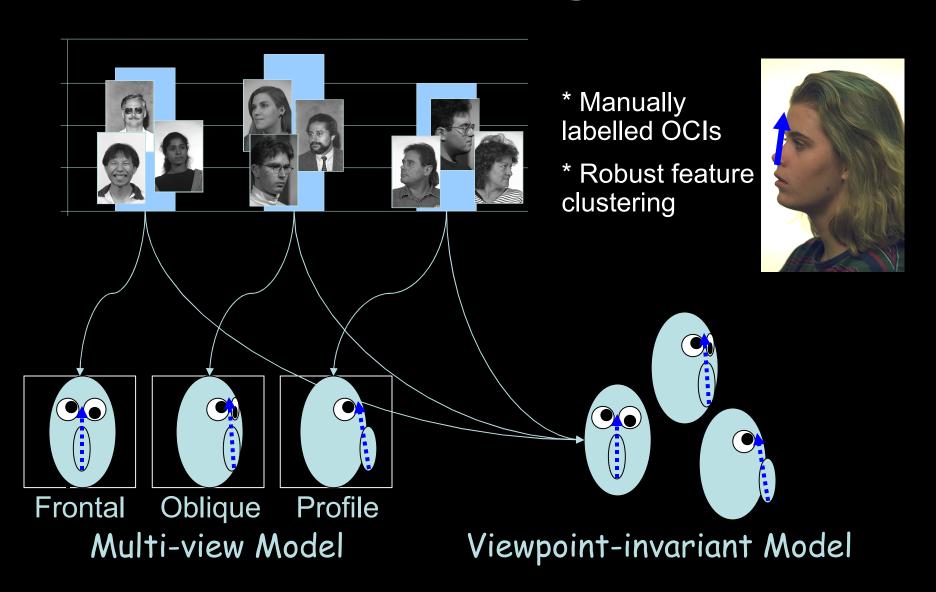
- · Learn multi-view and viewpoint-invariant models from the same data.
- Compare detection performance.
- · Data: faces, viewpoint variation.

Learning

- · Color FERET database
 - 500 unique faces, viewpoint labels

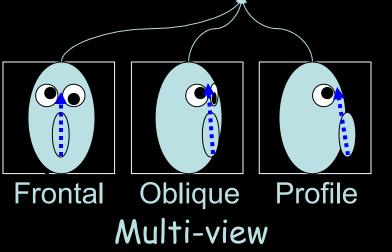


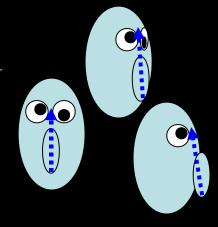
Learning



Detection and Localization

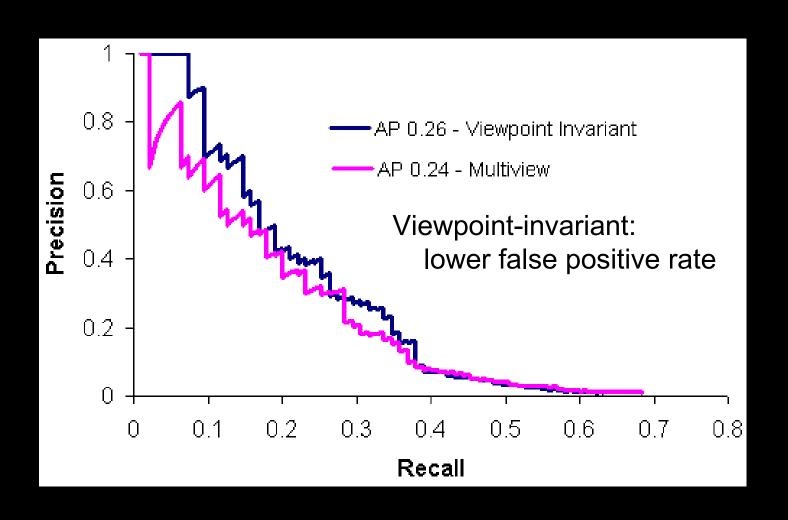
CMU Profile Database (subset, 97 faces)



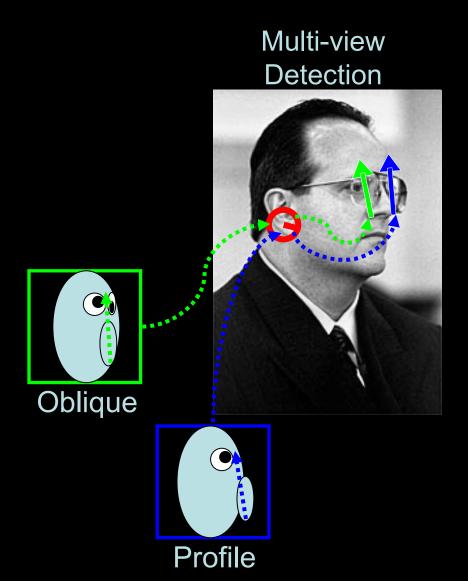


Viewpoint-invariant

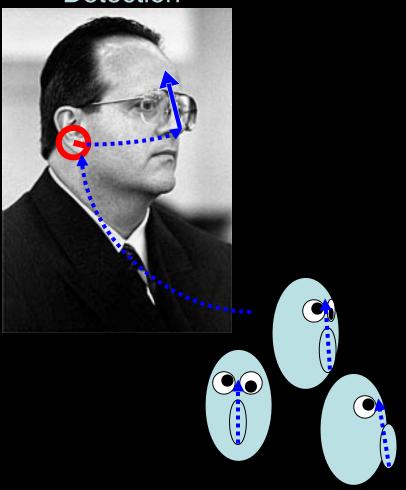
Detection Comparison



Example: Localization Ambiguity



Viewpoint-Invariant Detection



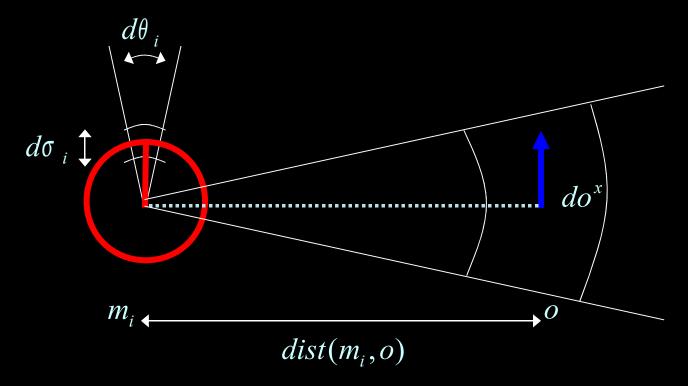
Ambiguity Difficult to Resolve

Choice of OCI

· Is nose-to-forehead OCI optimal?

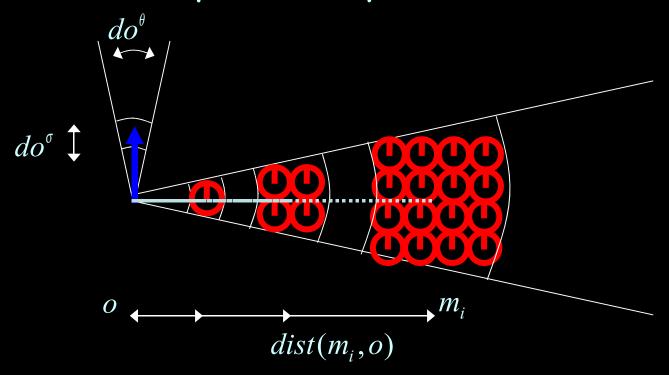
An Optimal OCI?

- Distance between feature and OCI
 - Related to OCI localization error do^x

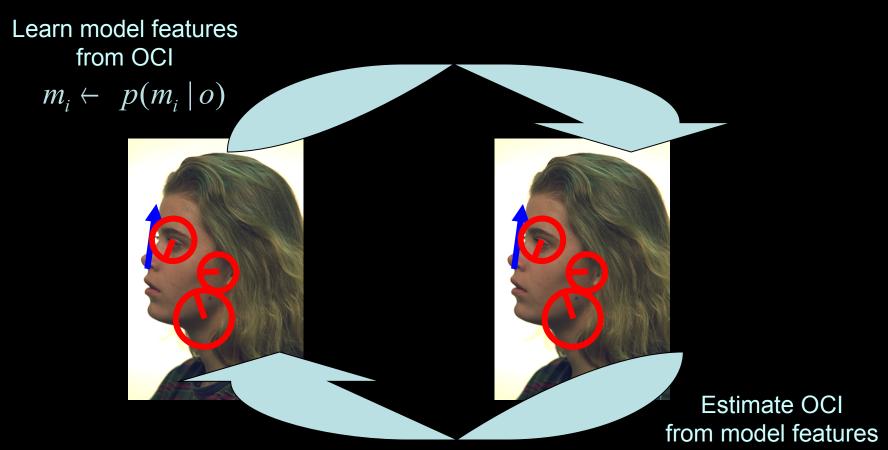


An Optimal OCI?

- · Distance between feature and OCI
 - Related to probability of a false match



Data-driven OCI Estimation

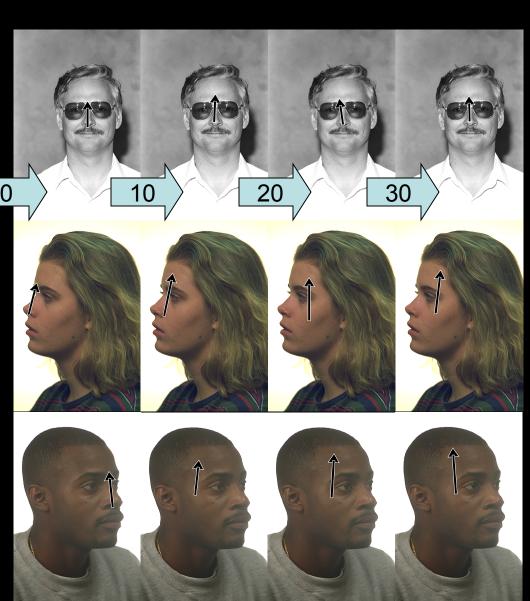


$$o \leftarrow \underbrace{argmax}_{o} \left\{ \frac{p(o \mid \{m_i\})}{p(\overline{o} \mid \{m_i\})} \right\}$$

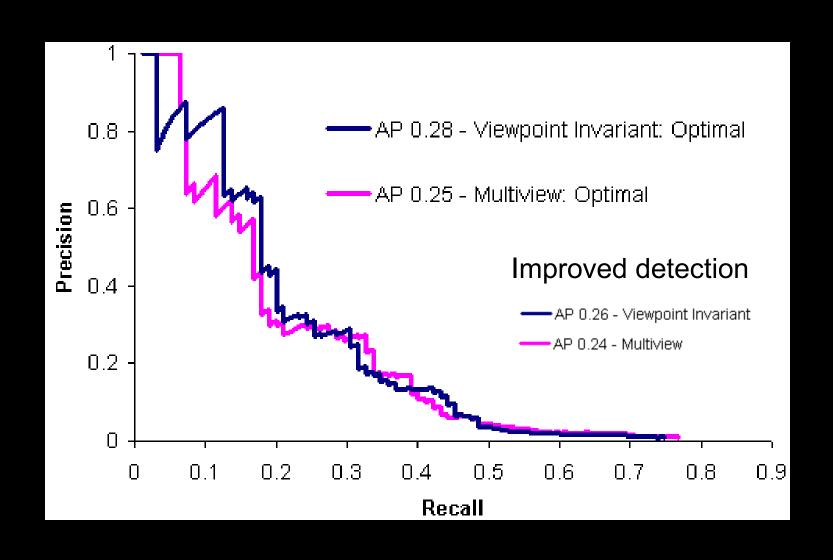
Data-driven OCI Estimation

30 Iterations

OCI remains consistent with 3D head in different views, different people



Comparison



Summary

- · Viewpoint-invariant modeling
 - Features related directly to object class
 - Viewpoint information not required
 - Reduces localization ambiguity
- · Data-driven OCI
 - Stable, minimizes OCI localization error
 - Consistent with 3D geometry of underlying object class