Detecting, Localizing and Classifying Facial Traits from Arbitrary Viewpoints

Matthew Toews and Tal Arbel

Centre for Intelligent Machines McGill University, Montreal, Canada

ICCV AMFG 2007

Overview

- · Problem
- · Approach
 - Invariant image features
 - Viewpoint-invariant face modeling
 - Classification
- Experimentation

Facial Traits?

· Gender, age, expression, ...

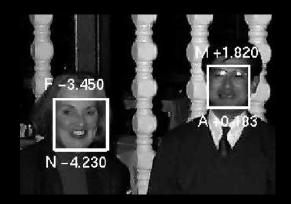
Problem

- In a cluttered scene, detect, localize and classify faces in terms of traits
 - Facial traits: gender, age, expression, ...

Facial Trait Classification

- Image features
 - Global: principle/independent components
 - Local: Haar wavelets, local regions
- Classification
 - Support vector machines, neural networks, decision trees

Classification: Gender



Shakhnarovich et al. 2002

Moghaddam 2002

Classification error: 4-10%

Jain et al. 2004

Yang et al. 2006

Baluja et al. 2007

Classification Challenges

- Detecting faces & features required for classification
 - Arbitrary viewpoints?
 - Occlusion?

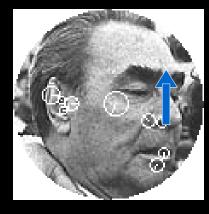
Detection/Localization Challenges

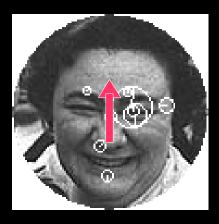
- Nuisance parameters
 - Illumination changes
 - In-plane geometrical deformations
 - Partial occlusion
 - Intra-class variation
 - In-depth geometrical deformations (viewpoint variation)
- · Computational efficiency

In an arbitrary cluttered scene,

extract features,

detect, localize and classify faces.





Female

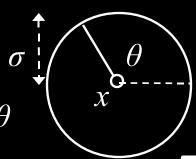
- · Local invariant image features
- · Viewpoint-invariant face modeling
- Classification

- · Local invariant image features
 - Identify the same image features despite changes in illumination and geometry.
- · Viewpoint-invariant face modeling
- Classification

Local Invariant Image Features

Geometry

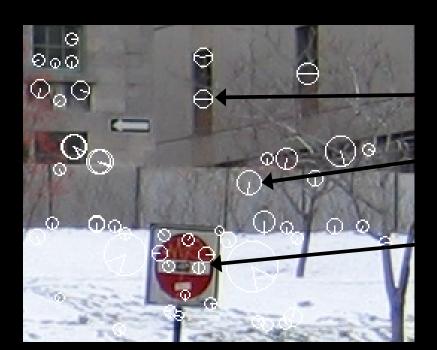
- Location x
- •Orientation θ
- •Scale σ

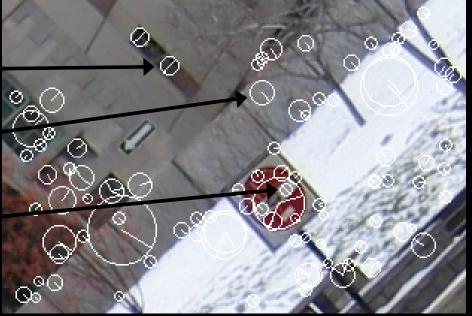


Appearance

- Image intensity information
- •I.e. Pixels, edges

SIFT: scale-invariant feature transform, Lowe 2004





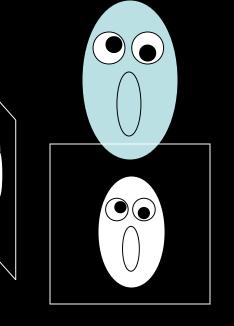
Local Invariant Image Features

- Address:
 - Nuisance parameters
 - · Illumination variation
 - In-plane geometrical variation
 - Occlusion
 - Efficiency
- Do not address:
 - Intra-class variation
 - Viewpoint variation

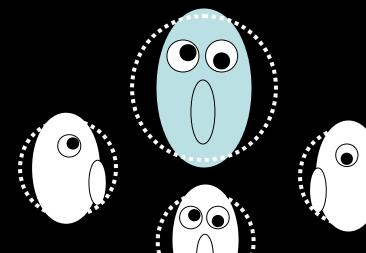
- · Local invariant image features
- · Viewpoint-invariant face modeling
 - Identify the same invariant features in arbitrary viewpoints and faces.
- Classification

Viewpoint-Invariant?

Multi-view model



Viewpoint-invariant model



Koenderink et al., 1979

Multi-view Viola-Jones, 2003

Beiderman, 1987

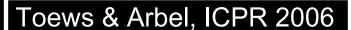
Toews & Arbel, ICPR 2006

Viewpoint-invariance: Advantage

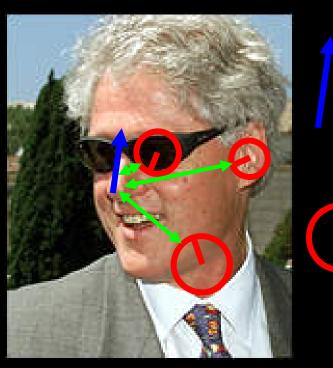
· Simplicity: no viewpoint variable

The Object Class Invariant (OCI)

- A geometrical reference frame that is:
 - 1) Uniquely defined for each pattern/object class instance.
 - 2) Invariant to the geometrical transform arising from the imaging process (perspective projection).



Object Class Invariant Modeling



Object Class Invariant

 $o:\{o^b,o^g\}$

Occurrence: binary presence or absence.

Geometry: location, scale, orientation.

Scale-invariant Feature

 $m_i: \{m_i^{\ b}, m_i^{\ g}, \overline{m_i^{\ a}}\}$

Transform relating feature and OCI geometries:

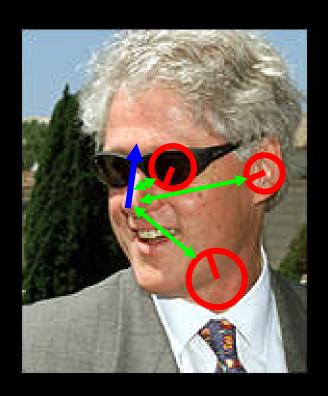
$$t_i: m_i^g \rightarrow o^g, o^g = t_i(m_i)$$

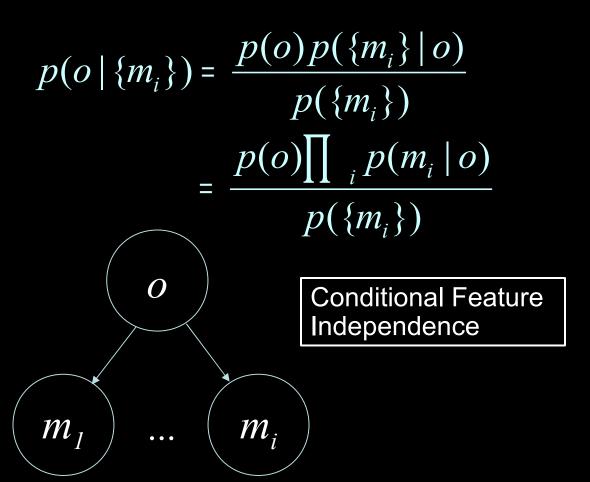
Appearance: derivative histograms.

Note: the OCI is unobservable,

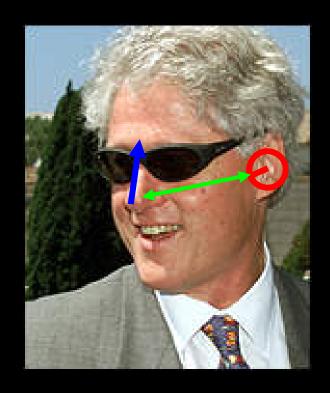
and has no appearance!

OCI Model

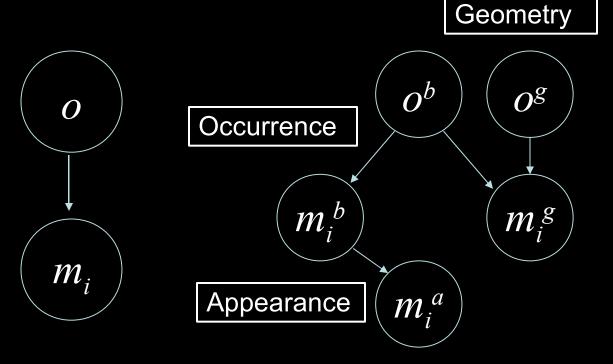




OCI Model

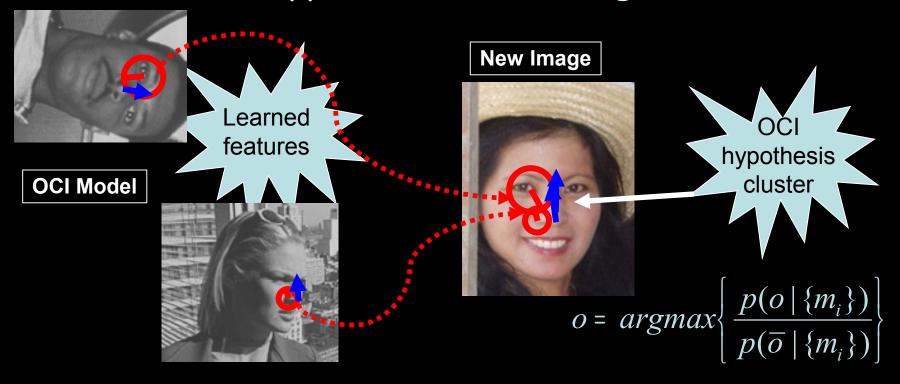


$$p(m_i | o) = p(m_i^a | m_i^b) p(m_i^b | o^b) p(m_i^g | o^b, o^g)$$



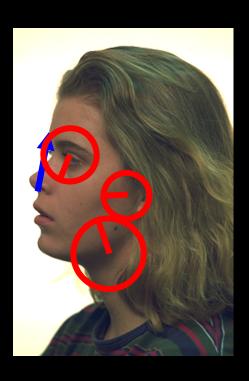
OCI Model Fitting

- · Identifying OCI instance in new image
 - Probabilistic voting
 - Robust hypothesis clustering



OCI Model Learning

- · Labeled OCIs
- Automatic features
- Robust feature clustering
 - Geometric agreement wrt OCI
 - Appearance agreement



- · Local invariant image features
- · Viewpoint-invariant face modeling
- Classification
 - Learn a classifier based on invariant image features identified in different viewpoints and faces.

Classification

Female feature

Classification

Bayesian classifier

Visual Trait

$$c:\{c_1,...,c_K\}$$

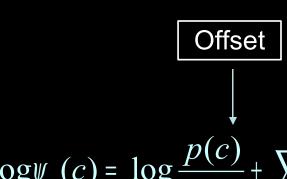
Feature Occurrence

$$f_i = m_i^{b=1}$$

$$\psi(c) = \frac{p(c | \{f_i\})}{p(\bar{c} | \{f_i\})} = \frac{p(c)p(\{f_i\} | c)}{p(\bar{c})p(\{f_i\} | \bar{c})} = \frac{p(c)}{p(\bar{c})} \prod_{i=1}^{M} \frac{p(f_i | c)}{p(f_i | \bar{c})}$$

Conditional Feature Independence

Classification



Likelihood ratio of feature given trait presence vs. absence.

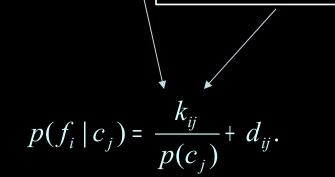
Weighted feature/trait

co-occurrence count

$$\log \psi(c) = \log \frac{p(c)}{p(\overline{c})} + \sum_{i}^{M} \log \frac{p(f_i \mid c)}{p(f_i \mid \overline{c})}.$$

$$\log \frac{p(c)}{p(\overline{c})} = E \left[\sum_{i=1}^{M} \log \frac{p(f_i | c)}{p(f_i | \overline{c})} \right]$$

Expected log likelihood sum given M detected features.



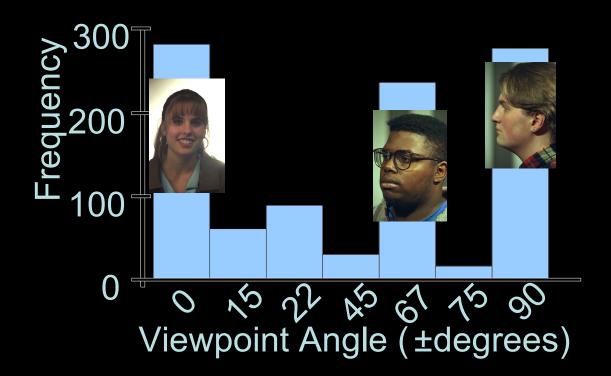
Bayesian estimation: Binomial likelihood + Dirichlet prior

Experimentation

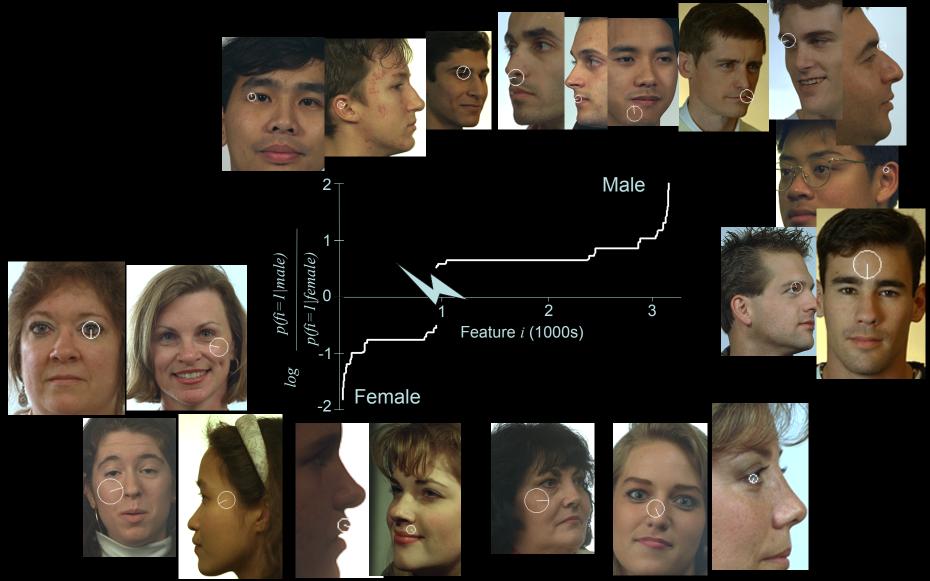
- Task:
 - Detect, localize and classify face gender.
- Training:
 - Learn face model & gender classifier
 - Training data labels: OCI and gender
- · Testing:
 - Detect, localize and classify new faces
 - Fully automatic

Experimentation

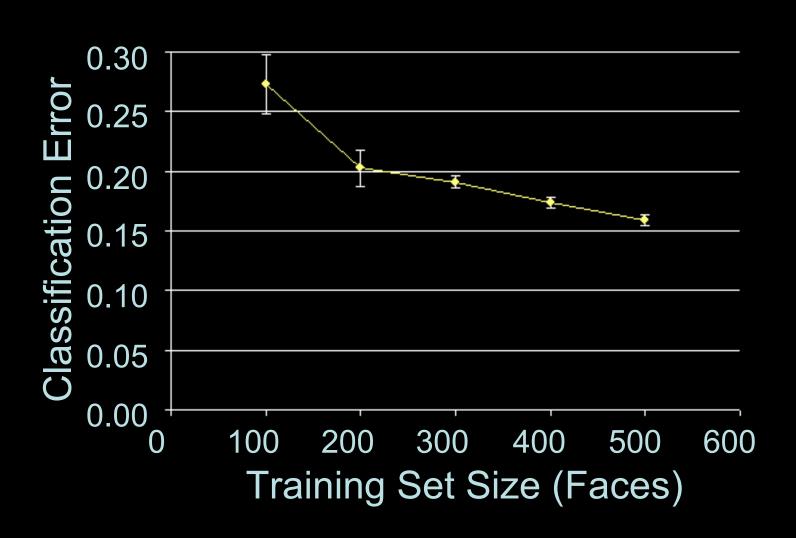
- Database: Color FERET
 - 994 unique subjects, random viewpoint
 - Male: Female = 3:2



Visual Cues of Gender

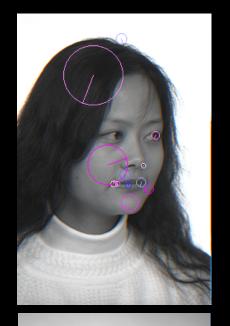


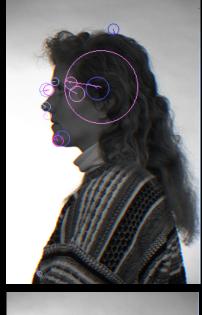
Classification Error

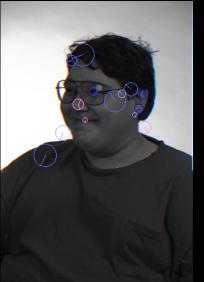


Classification: Correct

Female



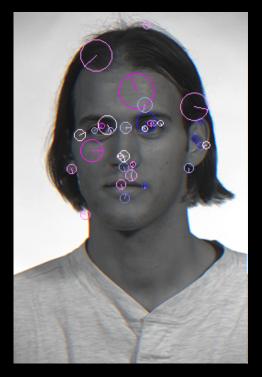




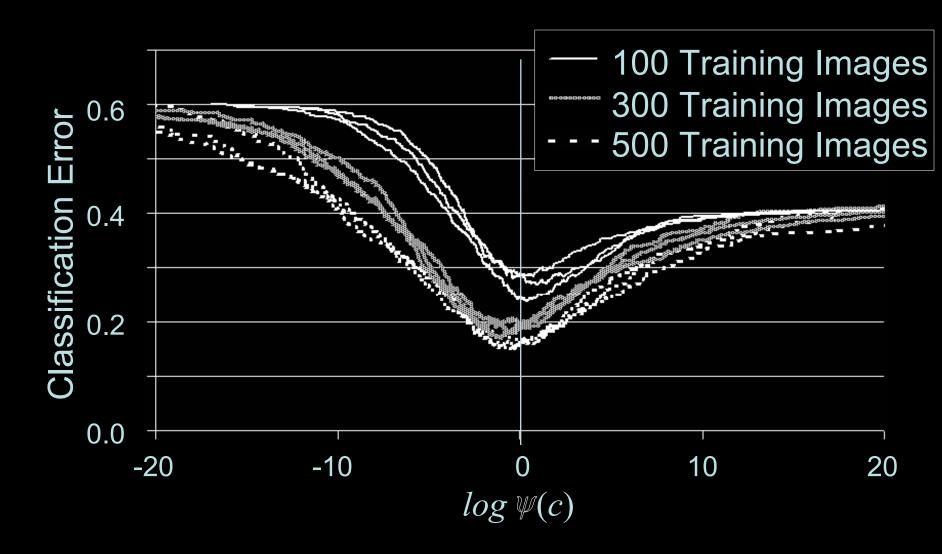
Classification: Incorrect

Localization Error 3.6%

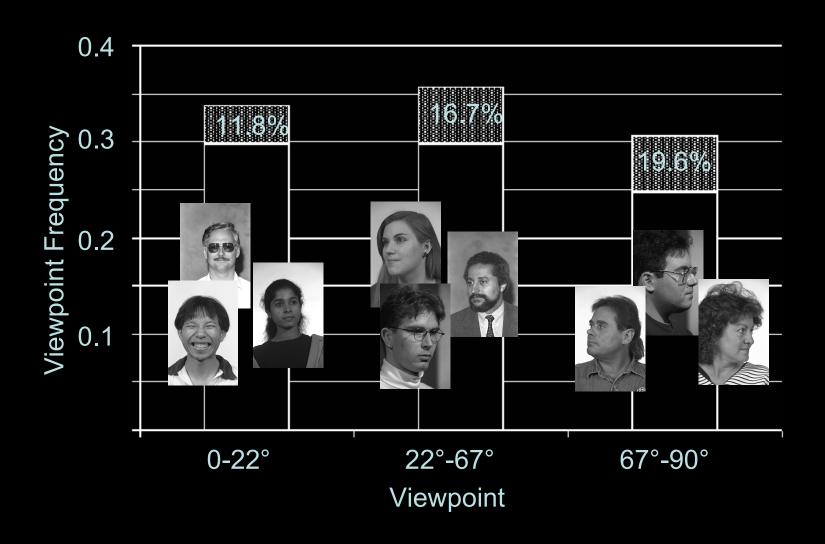
Excessive features of the opposite gender



Thresholds & Error

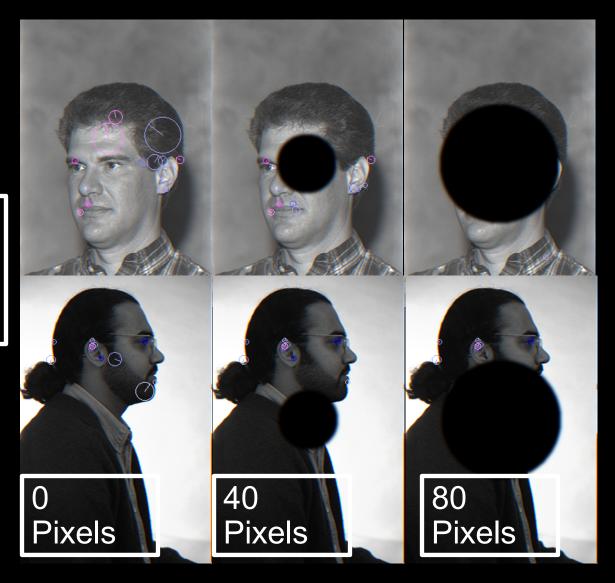


Classification Error over Viewpoint

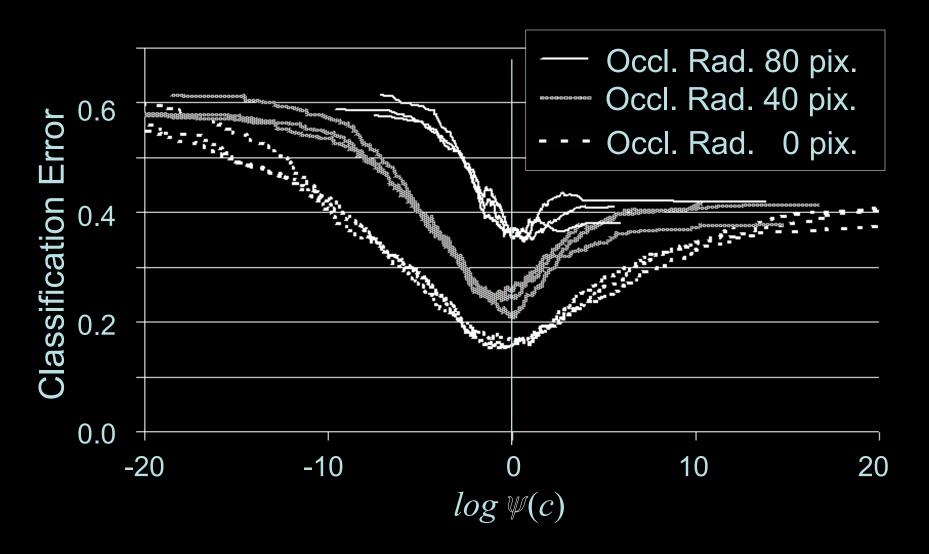


Occlusion

Artificial occluding circle in testing images, vary radius.



Occlusion: Thresholds & Error



Conclusion

AMFG 2007

- Integrated detection, localization and classification
 - Arbitrary viewpoints
 - Occlusion
- · Viewpoint-invariant model
 - No viewpoint information required
- Evaluation
 - Color FERET
 - Large, natural dataset would be ideal