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This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering
patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry
methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify
distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical
variability. The image is modeled as a collage of generic, localized image features that need not be present in
all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying
anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model
describes features in terms of their appearance, geometry, and relationship to subject groups, and is
automatically learned from a set of subject images and group labels. Features resulting from learning
correspond to group-related anatomical structures that can potentially be used as image biomarkers of
disease or as a basis for computer-aided diagnosis. The relationship between features and groups is
quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and
feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in
the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database.
FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven
fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting

mild AD (CDR=1).

© 2009 Elsevier Inc. All rights reserved.

Introduction

Morphometry aims to automatically identify anatomical differ-
ences between groups of subjects, e.g., diseased or healthy brains. The
typical computational approach taken to morphometry is a two-step
process. Subject images are first geometrically aligned or registered
within a common frame of reference or atlas, after which statistics are
computed based on group labels and measurements of interest
(Kendall, 1989; Bookstein, 1989). Morphometric approaches can be
contrasted according to the measurements upon which statistics are
computed. Voxel-based morphometry (VBM) involves analyzing
intensities or tissue class labels (Ashburner and Friston, 2000; Toga
et al., 2001). Deformation or tensor-based morphometry (TBM)
analyzes the deformation fields which align subjects (Ashburner et
al., 1998; Thompson et al., 2000; Chung et al., 2001; Studholme et al.,
2006; Lao et al.,, 2004). Object-based morphometry analyzes the
deformation of specific pre-segmented anatomical structures of
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interest, e.g., cortical sulci (Mangin et al., 2004) or subcortical
structures (Pohl and Sabuncu, 2009).

A fundamental assumption underlying most morphometry tech-
niques is that inter-subject registration is capable of achieving one-to-
one correspondence between subjects, and that statistics can
therefore be computed from measurements of the same anatomical
tissues across subjects. Inter-subject registration remains a major
challenge, however, due to the fact that no two subjects are identical;
the same anatomical structure may vary significantly or exhibit
distinct, multiple morphologies across a population, or may not be
present or easily identifiable in all subjects, e.g., in the case of different
cortical folding patterns, or in the case of pathology. Coarse linear
registration can be used to normalize images with respect to global
geometrical differences, e.g., rotation and magnification, however
cannot achieve precise alignment of fine anatomical structures.
Deformable registration has the potential to refine the alignment of
fine anatomical structures; however, it is difficult to guarantee that
images are not being over-aligned. Registration algorithms can be
compared in terms of their ability to achieve overlap of segmented
anatomical structures known to exist in healthy subjects (Klein et al.,
2009; Hellier et al., 2003). Overlap measures are only a surrogate for
registration accuracy, however, as different geometrical priors (e.g.,
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fluid (Bro-Nielsen and Gramkow, 1996) and elastic (Bajcsy and
Kovacic, 1989)) will generally result in different registration solutions,
which may simultaneously minimize volumetric overlap while
remaining anatomically implausible. Furthermore, it is difficult to
gauge registration performance when correspondence is ambiguous
or non-existent. Consequently, it may be unrealistic and potentially
detrimental to assume one-to-one correspondence, as morphometric
analysis may be confounding image measurements arising from
different underlying anatomical tissues (Bookstein, 2001; Ashburner
and Friston, 2001; Davatzikos, 2004).

Various approaches have been proposed to cope with the lack of
one-to-one correspondence when registering or modeling images of
multiple subjects. Images can be automatically clustered or divided
into distinct subsets based on image content (Blezek and Miller, 2006;
Sabuncu et al., 2009); however, the assumption of one-to-one
correspondence is operative during clustering and within subsets.
Image regions containing group-informative measurements can be
identified in an automatic manner (Fan et al., 2007); however, one-to-
one correspondence is assumed at a local scale. Inter-subject or atlas-
to-subject correspondence can be expressed in terms of valid
correspondence plus a residual component (Baloch et al., 2007),
where the residual represents unexplainable correspondence error.
This technique cannot effectively represent the case where the same
local anatomical region or structure bears multiple, distinct, modes of
appearance, e.g., multiple folding patterns associated with the same
gyrus in the cortex (Ono et al, 1990). The difficulty in achieving
correspondence can be mitigated by considering pre-defined ana-
tomical structures known to exist in most subjects (Mangin et al.,
2004; Pohl and Sabuncu, 2009); however, such structures may not be
known a priori or may be unrelated to the particular group
phenomena of interest. Individual subjects can be matched to
multiple atlases (Klein and Hirsch, 2005); however, it is unclear
how this strategy can be adapted to identify group-related anatomical
structure. Several authors propose relating subjects in terms of
localized features, e.g., geometrical structures (Coulon et al., 2000;
Thirion et al., 2007), moment descriptors (Sun et al., 2007, 2008) or
features combining local geometry and appearance (Toews and Arbel,
2007; Toews et al., 2009). Local features provide a mechanism for
avoiding one-to-one correspondence throughout the image, particu-
larly in the highly variable cortex (Sun et al., 2007; Toews et al., 2009).

Feature-based morphometry (FBM) is proposed specifically to
avoid the assumption of one-to-one inter-subject correspondence.
FBM admits that correspondence may not exist between all subjects
and/or throughout the image, and instead attempts to identify
distinctive, localized patterns of anatomical structure for which
correspondence between subsets of subjects is statistically probable.
Such patterns are identified and represented as distinctive scale-
invariant features (Lowe, 2004; Mikolajczyk and Schmid, 2004), i.e.,
generic image patterns that can be automatically extracted in the
image by a front-end salient feature detector. A probabilistic model
quantifies feature variability in terms of appearance, geometry, and
occurrence statistics relative to subject groups. Model parameters are
estimated using a fully automatic, data-driven learning algorithm to
identify local patterns of anatomical structure and quantify their
relationships to subject groups. The local feature thus replaces the
global atlas as the basis for morphometric analysis. Scale-invariant
features are widely used in the computer vision literature for image
matching, and have been extended to matching 3D volumetric
medical imagery (Cheung and Hamarneh, 2007; Allaire et al., 2008).
FBM follows from a line of research in which generic object
appearance is modeled in terms of a collection of independently
occurring local features in photographic imagery (Fergus et al., 2006)
and in 2D slices of the brain (Toews and Arbel, 2007). FBM builds on
this research, by extending the modeling theory to address group
analysis and to operate in 3D volumetric imagery. FBM is generally
applicable to arbitrary 3D imagery and subject groups; here as an

example application, we choose to validate FBM in the analysis
Alzheimer's disease (AD), an important and heavily studied neuro-
logical disease.

The remainder of this paper is organized as follows. The Feature-
based morphometry (FBM) section presents the FBM method,
including the probabilistic model relating local image features to
subject groups and the learning algorithm. The Materials and methods
and Results sections outline a clinical validation of FBM in the context
of differentiating between normal and probable Alzheimer's (AD)
subjects, using the freely available Open Access Series of Imaging
Studies (OASIS) data set (Marcus et al., 2007). The Discussion section
follows with a discussion.

Feature-based morphometry (FBM)

This section describes the image features and probabilistic
modeling approach used in FBM. FBM begins with a set of subject
images that have been spatially normalized via global linear
registration in order to achieve coarse, approximate inter-subject
alignment, e.g., affine registration to Talairach stereotaxic space
(Talairach and Tournoux, 1988). The purpose of affine alignment is
thus not to achieve one-to-one inter-subject correspondence, but
rather to ensure that, when present, corresponding anatomical
structures in different subjects are approximately aligned. Deformable
registration is not desired, as the goal is to avoid over-fitting and to
preserve local image patterns that may reflect important group-
related differences. FBM is a two-step process involving feature
extraction followed by probabilistic modeling. The Extracting local
image features in scale-space section describes feature extraction, in
which local image features are identified independently in individual
subject images. Features are generic image regions localized both in
image space and scale, which indicate the location and size of salient
anatomical patterns. The Probabilistic modeling of features section
describes probabilistic modeling, which focuses on quantifying the
statistics of features across different subjects and with respect to
subject groups. Model learning employs a robust clustering process in
order to identify instances of the same image feature in different
subjects. Each feature cluster represents observations of the same
distinctive anatomical structure in different subjects, and FBM seeks
to discover such structures which tend to co-occur with specific
subject groups.

Extracting local image features in scale-space

Images contain a large amount of information, and it is useful to
focus computational resources on interesting or salient features,
which can be automatically identified as maxima of a saliency
criterion evaluated throughout the image. While saliency criteria
can be designed to identify image ‘points,’ e.g., corners (Harris and
Stephens, 1988) or landmarks (Rohr, 1997), image patterns produced
by natural anatomical structures have a characteristic scale or size
which is independent of the image resolution, e.g., the width of sulci
or the thickness of the corpus callosum. An effective approach is thus
to identify features in a manner invariant to changes in image scale
(Lindeberg, 1998; Lindeberg et al., 1999). This can be done by
evaluating saliency in an image scale-space I(x, o) representing the
image I at location x and scale 0. The Gaussian scale-space is arguably
the most common in the literature (Witkin, 1983; Koenderink, 1984),
defined by convolution with the Gaussian kernel:

I(x,0) = 1(x,00)*G(Xx,0 — 0y), (1)

where G(x, 0) is a Gaussian kernel of mean x and variance o, and 0y
represents the scale of the original image. The Gaussian scale-space
arises as the solution to the heat equation when the image is modeled
as a diffusion process (Koenderink, 1984), and can be derived from a
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(b)

Fig. 1. lllustrating scale-invariant features extracted in an MR volume. Circles represent the locations and scales of features in (a) a coronal slice and (b) an axial slice. Solid circles
indicate features present in both slices, and dashed circles indicate features present in a single slice. Note how feature scales reflect the spatial extent of the underlying anatomical
structures, e.g., the width of sulci or ventricles. Here, features are extracted using the DOG operator (Lowe, 2004) and features shown are located within 2 voxels of the corresponding

slice through in the 3D volume.

set of reasonable axioms for scale-space generation including non-
creation and non-enhancement of local extrema, causality and
invariance to translation, rotation and magnification (Lindeberg,
1998).

Saliency in scale-spaces is commonly formulated in terms of
derivative operators (Lowe, 2004; Mikolajczyk and Schmid, 2004),
which reflect changes in image content with respect to changes in
location and/or scale.! In this paper, for example, geometrical regions
gi={x;, 0;} corresponding to local extrema of the difference-of-
Gaussian (DOG) operator are used:

b @

Use of the DOG operator in feature detection was popularized by the
scale-invariant feature transform (SIFT) technique in 2D photographic
imagery (Lowe, 2004), and the DOG operator has been shown to
outperform other techniques in terms of detection repeatability
(Mikolajczyk and Schmid, 2004). Each identified feature is a spherical
region defined by a location x;, a scale ;, and the image measurements
within the region, denoted as a;. Fig. 1 illustrates examples of scale-
invariant features extracted in a 3D volume using the DOG operator,
such features generally correspond to blob-like image structures. A
variety of different saliency operators exist and can be used to extract
scale-invariant features from different image characteristics, e.g.,
spatial derivatives (Mikolajczyk and Schmid, 2004), image phase
(Carneiro and Jepson, 2003) or entropy (Kadir and Brady, 2001).
With regard to morphometric analysis, features extracted in a
Gaussian scale-space are interesting for several reasons. Feature
geometries reflect the locations and scales of natural anatomical
structures in the image in a manner independent of image resolution,
and analysis can avoid depending on arbitrary locations and scales
determined by the particular imaging device used, e.g., using the
entire image or single voxels. As features arise from derivatives or
changes in image content, they typically correspond to distinctive
image patterns whose presence or absence in an image can be
established more readily than arbitrary image regions. Features are
invariant to geometrical deformations including image translations,
orientations and magnifications, and features corresponding to the
same anatomical structures can thus be reliably extracted despite
local tissue misalignments following initial coarse inter-subject or
atlas-to-subject registration. Features are invariant to locally linear

(X, 0:) = local argmax{ ’ di(x,0)
X, 0 do

! Gaussian derivative operators are also proposed to model receptive fields in
biological vision systems (Young, 1987).

intensity changes, and the same anatomical structures can thus be
robustly identified despite image intensity variations due to factors
such as scanner non-uniformity, etc. Finally, features can be efficiently
extracted in O(N log N) time and space complexity using image
pyramid data representations (Lowe, 2004), where N is the size of the
image in voxels.

Probabilistic modeling of features

While scale-invariant features can be robustly extracted despite
intensity and geometrical changes, it is difficult to identify features
arising from the same underlying tissue in different subjects. In
general, such features vary in geometry and appearance from one
subject to the next, and cannot be reliably extracted in all subjects,
due to inter-subject and inter-group variability. The goal of probabi-
listic modeling is thus to identify features which do occur with
statistical regularity in subsets of subjects, and to quantify their
variability and informativeness with respect to subject groups.

Here, an individual feature is denoted as fi={a;, o, g, Vi}. ai is a
vector of image measurements representing the image appearance of
a local feature. ¢ is a binary random variable indicating whether g;
represents the appearance of a valid feature instance or random noise.
gi={x;, 0} represents the geometry of a feature in terms of image
location x; and scale o;. ; is a binary random variable indicating the
presence or absence of geometry g; in a subject image.

Let F={fi,.... fn} represent a set of N local features extracted from a
set of images, where N is unknown. Let T represent a geometrical
transform bringing features into coarse, approximate alignment with
an atlas, e.g., a rigid or affine transform to the Talairach space
(Talairach and Tournoux, 1988). Let C represent a discrete random
variable of the group from which subjects are sampled, e.g., diseased,
healthy. The posterior probability of (C,T) given F can be expressed as:

N
pC.7|F) = PGDPFICT) _ p(CDIL pHICT) 3)

p(F) p(F)

where the first equality results from Bayes rule and the second from
the assumption of conditional feature independence given (C, T). The
assumption of conditional independence is reasonable here, as inter-
feature intensity dependencies are largely absent for features
localized in scale and in space, and inter-feature geometrical
dependencies are largely accounted for via knowledge of (T, C). To
illustrate, consider the case of a pathology that tends to introduce a
systematic bias into spatial normalization. Features f; and f; will
generally exhibit bias-related dependencies; however, variables (T, C)
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account for such dependencies, leaving f; and f; conditionally
independent. In Eq. (3), p(filC, T) represents the probability of a
feature f; given (C, T), p(T, C) represents a joint prior distribution over
(G, T) and p(F) represents the evidence of feature set F. The focus of
modeling is on the conditional feature probability p(fi|C, T) which is
expressed as:

p(filC,T) = p(a;, &, 8,7 |C, T),
= p(a;|®;, &Y, C, T)p(18i, v, C, T)p(&i Vi, C, T)p(y; | C, T),
4)

= p(aj|a;)p(e|vi)p(&i | Vi, Tp(Yi]C). (5)

Here, Eq. (4) follows from the chain rule of probability, and Eq. (5)
follows from several reasonable conditional independence assump-
tions between variables. Feature appearance a; is conditionally
independent of (g, v, C, T) given o, and p(aj|oy) is a density over
feature appearance a; given appearance validity o;. Appearance
validity o; is conditionally independent of (g; C, T) given the
occurrence of a consistent geometry y;. p(ay|y;); thus, it represents a
Bernoulli distribution over o, as specified by y;=0 and y;=1.
Feature geometry g; is conditionally independent of C given
geometrical occurrence 7; and global transform T, and p(gi|y;, T) is a
density over g; conditional on (y; T). Finally, feature geometrical
occurrence vy; is conditionally independent of T given the group C, and
p(yilC) thus represents a Bernoulli distribution over v; for each
subject group C.

Model learning

Learning focuses on identifying clusters of features which are
similar in terms of their group membership, geometry and appear-
ance. Features in a single cluster represent different observations of
the same underlying, group-related anatomical structure, and can be
used to estimate the parameters of distributions in Eq. (5). Fig. 2
illustrates an example of features in different subjects grouped into a
cluster during model learning.

Preprocessing.  Subjectimages are first aligned into a global reference
frame, and Tis thus constant in Eq. (3). At this point, images have been
normalized according to location, scale and orientation, and the
remaining appearance and geometrical variability of anatomical
structure can be described (Dryden and Mardia, 1998). Image features
are then detected independently in all subject images as in Eq. (2).

Clustering. ~ For each feature f;, two different clusters or feature sets
G; and A; are identified, where f;=G; are similar to f; in terms of
geometry, and f;€A; are similar to f; in appearance. First, set Gj is
identified based on a robust binary measure of geometrical similarity.

Features f; and f; are said to be similar if their locations and scales
differ by less than error thresholds ¢x and ¢, In order to compute
geometrical similarity in a scale-independent manner, location
difference is normalized by feature scale 0;, and scale difference is
computed in the log domain. G; is thus defined for each f; as:

X — x|
G = {_ﬂ Y <gy, N

()'.
In—
Uj

<o }. (6)

Here, thresholds e and ¢, represent the maximum acceptable
deviation in the location and scale of a feature across subjects within
normalized Talairach space. These can be set empirically or deter-
mined automatically; larger values may result in grouping geomet-
rically different anatomical structures within a single model feature
and produce a smaller overall feature set, and smaller values will
result in treating variations of the same anatomical structure as
unique features and produce a larger feature set. In general, these
thresholds can be set generously, as feature appearance will play an
important role in sorting out ambiguities.

Next, set A; is identified using a robust measure of appearance
similarity, where f; is said to be similar to f; in appearance if the
difference between their appearances is below a threshold ¢,. A; is
thus a function of ¢, and defined for each f; as:

Ai(eq) = {f: l1ai — ql1= 2}, )

where in this paper, || || represents the Euclidean norm between
appearance vectors g; normalized to unit length, and reflects the
assumption of independent and identically distributed image mea-
surements in g; and a;. Note that while a single pair of geometrical
thresholds (e, &) applies to all features, ¢, is feature-specific and an
optimal value is automatically determined for each feature such that:

(8)

&g = sup{ £,<€(0, ) : 1<M }
‘a; “a ) . .

C1GNG NAi(e,) ]

where G is the group associated with feature f;. ¢, is thus set to reflect
the maximum permissible discrepancy in appearance such that the
features are still more likely than not to arise from the same
geometrically consistent, group-related anatomical structure. An
important practical detail is to ensure that the ratio in Eq. (8) is
well-defined in the presence of sparse data, e.g., when
|GiN G NAj(e )| = 0. This can be done by adding small artificial
counts to both the numerator and denominator of the ratio, a
procedure referred to as Dirichlet regularization (Bishop, 2006).

Reduction.  The intersection G; N A; represents a cluster of features
which share a common geometry and appearance with f;, and arise

Fig. 2. White circles represent features in different subjects which are similar in terms of their appearance, geometry and group membership. These features are considered to arise
from the same underlying group-related anatomical structure and grouped into a single cluster in model learning. The features shown here are identified in 10 of 75 Alzheimer's
subjects and in none of 75 normal control subjects.
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from the same underlying anatomical pattern. Since clusters (G;, A;)
are generated for all images features f;, many effectively correspond to
the same feature cluster. A reduced set of model features is identified
by discarding a set R of all features which are themselves elements of
a larger cluster f;:

R={f:fieGnA A 1GNAl>IGNAl}. 9)

Reduction effectively compresses the set of raw features extracted
in all subjects into a smaller, more meaningful set of model
features, which represent probable inter-subject correspondences
and can be used to quantify the relationship between anatomy and
subject groups. Note that in general, a degree of partial overlap may
exist between model features resulting from this reduction process,
and more sophisticated feature reduction or clustering techniques
could be potentially applied, e.g., structural group analysis (Coulon
et al,, 2000; Thirion et al., 2007). In the context of FBM, however,
the distinctive appearance component of scale-invariant features
aids significantly in disambiguating between different yet geomet-
rically similar features, and partial overlap is rarely observed in
practice.

Morphometric analysis

The aim of FBM is to automatically discover group-related
anatomical structures, which can be used in order to guide further
investigation into the anatomical basis for group differences or as
disease biomarkers. The informativeness of a feature regarding group
is quantified by the following likelihood ratio:

B |{ﬁ:ﬁeGmEmAi}\7 o
1{fi:fieGinGna b

p(fi =11G.T)

p(fi=11G.1)

where f;=1 is used as shorthand here to signify the event of positive
feature occurrence (o; =1, y;=1). The ratio in Eq. (10) represents the
likelihood that f; co-occurs with group G vs. another different group
C;. This ratio explicitly measures the degree of association between an
image feature and a specific subject group, and lies at the heart of FBM
analysis. Features can be sorted according to likelihood ratios to
identify the anatomical structures most indicative of a particular
subject group, e.g., healthy or diseased, and those with likelihood
ratios near 1 can be disregarded as uninformative. As in Eq. (8),
Dirichlet regularization is applied to cope with sparse data when
estimating the likelihood ratio.

The statistical significance of the relationship between an
individual feature and subject groups can be expressed using Fisher's
exact test, where p-values are calculated from a contingency table of
feature/group co-occurrence frequencies. Techniques such as Bon-
ferroni correction or permutation testing (Nichols and Holmes, 2001)
can be used to correct p-values for multiple comparisons to control
the probability of committing a type I error. In scenarios such as FBM
where the goal is to discover group-related features amid a high
number of potential candidates, Bonferroni-type correction proce-
dures which express the probability of any error may be unnecessarily
conservative. In particular, the probability that a certain fraction of
apparently group-related features arise by random chance may be
relatively high; however, this does not preclude the possibility of
discovering a significant number of valid group-related features. An
appropriate alternative here is the false discovery rate (FDR)
(Benjamini and Hochberg, 2001), defined as the fraction of features
falling below an uncorrected p-value threshold which represent false
rejections of the null hypothesis, i.e., that features are statistically
unrelated to subject groups. The FDR can be calculated using the
method of Benjamini and Hochberg (2001) for subsets of features f;
with the smallest uncorrected p-values.

Classifying new subjects

The FBM framework can be used to identify group-related
features in new subjects and to classify new subjects according to
group, a procedure potentially useful for computer-aided diagnosis.
Classification begins by first aligning a new subject image into
stereotactic space via T and extracting image features, as in the
learning procedure. A set of model features F is then identified in the
new subject in a manner similar to model learning, where a model
feature f; is declared to be identified if an image feature fj in the new
subject exists such that |[a; — aj] |< &, “X‘Ui"”k & and \lngi |<éo.
Classification based on identified features can then be expressed as:

p(C,T|F) | _ argmax p(iIC.T)
e b L )

(1)

« _ argmax
= e {

where C* is the optimal Bayes classification. In Eq. (11), classification
is primarily driven by the data likelihood ratio [T; p(f“” , based on
the link between individual model features and glOUlSS asin Eq. (10)
Factor 2ET
group algd t)ransform. Note that thresholding the data likelihood ratio
at 1 is generally ineffective for classification, as different subject
groups generally occur with different frequencies in training and
testing data, and produce different numbers of group-informative
features. Instead, the prior probability ratio can be varied in order to
balance the sensitivity/specificity rates of classification in a clinical
setting.

Materials and methods

FBM is a general technique that can be used to discover group-
related anatomical structure in volumetric image sets. In order to
validate FBM, we choose the example application of Alzheimer's
disease (AD) analysis, as AD is a well-known, important, incurable
neurodegenerative disease affecting millions worldwide, and is the
focus of intense computational research (Qiu et al., 2009; Kloppel
et al., 2008; Duchesne et al., 2008; Marcus et al., 2007; Buckner et al.,
2004).

Experiments use OASIS (Marcus et al., 2007), a large, freely
available data set including 98 normal (NC) subjects and 100
probable AD subjects ranging clinically from very mild to moderate
dementia. All subjects are right-handed, with approximately equal
age distributions for NC/AD subjects ranging from 60+ years with
means of 76/77 years. For each subject, 3-4 T1-weighted scans are
acquired, gain-field corrected and averaged in order to improve the
signal/noise ratio. Images are aligned within the Talairach reference
frame via affine transform T and the skull is masked out (Buckner
et al.,, 2004).

The DOG scale-space (Lowe, 2004) is used to identify feature
geometries (x;, 0;). Feature appearances g; are obtained by cropping
cubical image regions of side length 4,/0; centered on x;, which are
then scaled to (11 x 11 x 11)-voxel resolution. Voxel intensities are
shifted to zero mean and normalized to unit length. Rotation
invariance can also be achieved (Allaire et al., 2008); however, this
is omitted here as subjects are already rotation-normalized via T and
further invariance reduces appearance distinctiveness. Spurious
features will naturally arise from anatomical structure such as
surfaces or tissue boundaries, which cannot be reliably localized in
all spatial directions. These can be identified and discarded via an
analysis of the 3 x 3 Hessian matrix H, calculated from derivatives of
image intensity with respect to spatial coordinates about feature
location and scale. Features for which the ratio [T’ff Z) of the
determinant vs. the cubed trace of H is low indicate degenerate
patterns whose localization within the image is under-determined,
and a threshold can be imposed based on this ratio to discard such
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features (Lowe, 2004). Approximately 800 features are extracted in
each (176 x 208 x 176)-voxel brain volume.

For model learning, geometrical error threshold values used are
empirically set to ¢ = % and ¢, = ln%; these values are chosen
generously in an attempt to include the natural range of variation of
features across different subjects in normalized Talairach space.
Further increasing these values increases the tendency to group
geometrically similar yet different anatomical patterns into the same
geometrical clusters; however, the net effect on the set of model
features resulting from learning is minimal, as ambiguities in
geometrical clustering are resolved in a consistent manner in the
subsequent stage of appearance clustering. Significantly decreasing
these values, however, tends to fragment model features, as the
maximum permissible geometrical variability is insufficient for
effectively clustering features arising from the same underlying
anatomical structure.

Results

To investigate discovery of group-related anatomical patterns,
model learning is applied on a randomly selected subset of 150
subjects (75 NC, 75 AD). Approximately 12K model features are
identified via the learning processes, and these are graphed in Fig. 3.
The solid curve in Fig. 3 plots the occurrence frequency p(fi=1|T) of
features in the training set, which is proportional to the sizes of
feature clusters identified during learning. Note that a large number of
features occur infrequently and are observed in few subjects. In
general the number of subject images required to obtain a good
sampling is feature-specific and related to the intrinsic feature
occurrence frequencies; frequently occurring features can be repea-
tably observed and modeled from few subject images, while features
arising from more subtle anatomical structure can only be observed in
larger data sets.

The blue curve in Fig. 3 plots the likelihood ratio of feature
occurrence in AD vs. NC subjects, along with several examples of AD-
and NC-related features. A number of features identified occur
frequently, yet bear little information regarding subject group (center
of graph). A significant number are strongly indicative of either NC or

AD subjects (extreme left or right of graph). Furthermore, the
locations and scales of many strongly group-related features are
consistent with brain regions known to differ between AD and NC
groups, and their appearances can be interpreted in terms of
established indicators of AD in the brain. For examples of AD-related
features shown in Fig. 3, feature (a) corresponds to enlargement of the
extracerebral space in the anterior Sylvian sulcus, feature (b)
corresponds to enlargement of the temporal horn of the lateral
ventricle (and one would assume a concomitant atrophy of the
hippocampus and amygdala), and feature (c) corresponds to
enlargement of the lateral ventricles. For NC-related features, features
(1) (parietal lobe white matter) and (2) (posterior cingulate gyrus)
correspond to non-atrophied parenchyma and feature (3) (lateral
ventricle) to non-enlarged cerebrospinal fluid spaces.

Examples of the 8 most statistically significant AD-related and NC-
related features are shown in Figs. 4 and 5. In Fig. 4, six of the eight
most significant AD-related features correspond to established
indicators of AD, independently identified in both hemispheres.
Specifically, (a-1) and (a-r) represent the anterior poles of the
enlarged lateral ventricles, (b-1) and (b-r) represent regions of
atrophied white matter and (c-1) and (c-r) represent the enlarged
temporal poles of the lateral ventricles. Fig. 4d represents the
enlargement of the extracerebral space in the anterior Sylvian sulcus
and Fig. 4e represents the enlargement of the posterior region of the
right lateral ventricle. Fig. 5 illustrates the eight most significant
features associated with NC subjects. The 16 features in Figs. 4 and 5
fall within the set of the 25 most significant group-related features,
associated with a false discovery rate of 0.15. For these 25 features,
21-22 could thus be expected to result from valid group-related
image structure. Note that traditional morphometry methods can be
used to identify differences in similar brain regions, for example the
two-sample t-test approach used in VBM shows differences between
AD/NC groups in regions similar to Fig. 4 ((c-1) and (c-r)) (Whitwell
et al., 2007). Although traditional methods can identify regions in
which voxel-level group differences occur, questions may remain as
to the nature of these differences: are they due to systematic group-
related differences in spatial normalization (Bookstein, 2001)? Are
they the result of multiple, distinct patterns of anatomy present in the
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Fig. 3. The dashed curve plots the likelihood ratio In b =TNCT of feature occurrence in AD vs. NC subjects sorted in ascending order; low values indicate features associated with NC
subjects (lower left) and high values indicate features associated with AD subjects (upper right). The solid curve plots feature occurrence probability p(fi=1|T), which is
proportional to the cardinality of model feature clusters identified during learning. Note a large number of frequently occurring features bear little information regarding AD or NC
(center of graph). Examples of highly NC-related (1-3) and AD-related (a—c) features are shown, along with their associated likelihood ratios.
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(C-') NC=0, AD=10, p=0.0007,

(C—l’) NC=1, AD=12, p=0.0011

Fig. 4. Examples of the eight most significant AD-related features, shown in sagittal and coronal slices. The feature occurrence frequencies within 75 AD and 75 NC subjects and
associated uncorrected p-values are given. Out of eight features, six represent similar anatomical regions identified independently in left and right hemispheres. All represent
neuroanatomical regions known to be affected by AD.

NC=8, AD=0, p=0.0032

Fig. 5. Examples of the eight most significant NC-related features, shown in sagittal and coronal slices. The feature occurrence frequencies within 75 AD and 75 NC subjects and
associated uncorrected p-values are given. Most features lie near the mid-sagittal plane (1-6), and reflect stable un-atrophied cortical (1-3) or subcortical (4-6) structure. Feature
(7) represents an anatomical pattern reflective of natural age-related atrophy, and feature (8) represents a distinctive cortical fold.
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region in different subjects? FBM focuses on identifying distinctive
image features, that need not be present in all subjects and that tend
to occur preferentially in subjects of similar groups, thereby providing
a framework for addressing such questions.

FBM can also be used to classify new subjects in a computer-aided
diagnosis scenario. An analysis of classification performance must
take into account the clinical and demographic information of the
experimental subjects, and the degree of AD-specific prior informa-
tion incorporated into classification. In terms of demographic/clinical
information, AD subjects exhibiting very mild dementia (i.e., bearing a
clinical dementia rating (CDR) of 0.5) are more difficult to
discriminate from healthy subjects than those exhibiting mild or
moderate dementia (i.e., CDR=1 or 2), and several approaches
restrict classification to mild AD (Kloppel et al., 2008; Duchesne et al.,
2008). Furthermore, elderly subjects are more easily confused with
AD subjects due to the appearance of normal age-related atrophy, and
imposing age limits generally improves classification (Kloppel et al.,
2008). In terms of prior information, classification can generally be
improved by focusing on specific measurements or regions of interest
(ROIs) known to be implicated in AD, e.g., pre-segmented grey matter
maps (Kloppel et al., 2008) or the medial temporal lobe region
(Kloppel et al., 2008; Duchesne et al., 2008). Classification rates as
high as 0.92 have been achieved using the classic support vector
machine (SVM) method (Cortes and Vapnik, 1995) on intensity data
in the medial temporal lobe region (Duchesne et al., 2008), and
perfect classification has been achieved from measurements such as
the entorhinal cortex thickness and the hippocampus volume
(Desikan et al., 2009).

Classification here is performed in a leave-one-out manner, where
each OASIS test subject in turn is kept aside and classified using an
FBM model trained on all other subjects. Note that the training
subjects and thus the learned model features vary from one trial to the
next; however, by inspection the most significant group-related
model features are consistently identified across trials, e.g., those
shown in Figs. 4 and 5. While FBM model learning makes use of all 198
OASIS subjects (minus the test subject), classification results are
reported on 3 different divisions of test subjects, in order to illustrate
the effect of age and the severity of clinical diagnosis on classification
performance:

1) Subjects aged 60-80 years, mild AD (CDR=1) (66 NC, 20 AD), a
scenario similar to (Kloppel et al., 2008).

2) Subjects aged 60-96 years, mild AD (CDR=1) (98 NC, 28 AD), to
illustrate classification of elderly subjects.

3) Subjects aged 60-80 years, both mild and very mild AD (CDR=1
and 0.5) (66 NC, 69 AD), to illustrate classification of very mild AD.

The receiver operating characteristic (ROC) curves of these three
divisions are plotted in Fig. 6. Division (1) results in an equal error
classification rate (EER)? of 0.80. A slightly higher classification rate of
0.81 is reported in a similar scenario using the SVM-based method
(Kloppel et al., 2008), although a direct comparison cannot be drawn
as the underlying data sets are different, and AD severity categories
are defined differently. In Kloppel et al.'s (2008) study, for instance,
mild AD is defined by Mini Mental State Examination (MMSE) score
>20 with mean MMSE = 23.5, and in OASIS (Marcus et al., 2007) by
CDR =1, with corresponding mean MMSE = 20.8, SD = 3.7. Note also
that the work of Kloppel et al. (2008) makes use of AD-related
measurements in the form of grey matter maps, while FBM operates
on features extracted throughout the brain and subcortical regions.
For divisions (2) and (3), classification rates drop to EER=0.70 and
0.71, respectively, demonstrating the difficulty in classifying subjects

2 The EER is a threshold-independent measure of classifier performance, defined as
the classification rate where misclassification rates for AD/NC subjects are equal. Here,
the EER is achieved at a data likelihood value of InBH2D = — 438, and a
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Fig. 6. ROC curves for leave-one-out classification divisions. Maximum classification
accuracy is achieved in (1) for subjects with mild AD (CDR = 1) and within 60-80 years
of age (solid curve, EER = 0.80). Including (2) elderly subjects or (3) very mild AD cases
both result in reduced classification performance.

that are elderly or exhibit very mild AD. A rate of EER=0.65 is
obtained for leave-one-out trials on all 198 OASIS subjects, where
classification errors are largely due to younger subjects with very mild
AD and elderly NC subjects.

To our knowledge, classification results have not yet been reported
on the OASIS data in a comparable image-based classification
scenario, and we attempted a baseline image-based classification
experiment using the popular SVM method (see details in Appendix
A). Classification was unsuccessful despite investigating various
combinations of SVM kernels and image pre-processing steps,
speaking to the difficulty of image-based classification. Note that
while affine-aligned OASIS subject images are used here, more
effective SVM classification of AD/NC subjects has been reported
using deformable image alignment (Lao et al., 2004; Duchesne et al.,
2008). While SVMs are useful for classification, they require
additional interpretation to explain the link between anatomical
tissues and groups (Lao et al., 2004). The primary advantage of FBM is
the ability to automatically identify distinctive, group-related ana-
tomical patterns that may not be present in all subjects, in addition to
the ability to classify new subjects.

Discussion

This paper presents and validates feature-based morphometry
(FBM), a new, fully data-driven technique for discovering group-
related anatomical structures in volumetric images. The primary
difference between FBM and other morphological analysis techniques
is that FBM explicitly addresses the situation where one-to-one inter-
subject correspondence does not exist between all subjects, due to
disease or anatomical variability. This is achieved by modeling the
image as a collage of local scale-invariant features that need not occur
in all subjects, which provides a mechanism to avoid confounding
analysis of tissues which may not be present or easily localizable in all
subjects. FBM is based on learning a probabilistic model of local, scale-
invariant features which reflect group-related anatomical character-
istics. A clinical validation is performed on a set of 198 NC and
probable AD subjects from the large, freely available OASIS data set
(Marcus et al., 2007). Anatomical features consistent with established
differences between NC and AD brains are automatically discovered in
a set of 150 training subjects. The significance of features identified is

doi:10.1016/j.neuroimage.2009.10.032

Please cite this article as: Toews, M., et al., Feature-based morphometry: Discovering group-related anatomical patterns, Neurolmage (2009),



http://dx.doi.org/10.1016/j.neuroimage.2009.10.032

M. Toews et al. / Neurolmage xxx (2009) XxX-Xxx 9

quantified in terms of the false discovery rate (FDR), and analysis
shows that a sizable set of group-related features can be identified
with a low FDR. FBM is potentially useful for computer-aided
diagnosis, and leave-one-out trials achieve a classification rate of
EER=0.80 for subjects aged 60-80 years exhibiting mild AD
(CDR=1) in a scenario similar to recent work (Kloppel et al., 2008).
To our knowledge, classification results for similar methods where
measurements or regions of interest are not known a priori have not
yet been published for the OASIS data set; however, the OASIS data set
is freely available and comparison with other techniques in the
literature will be possible.

FBM does not replace current morphometry techniques, but rather
provides a complementary approach which is particularly useful in
the situation where one-to-one inter-subject correspondence is
ambiguous or difficult to achieve. For this reason, FBM has the
potential to become widely used in contexts such as neurological
disease analysis, where this is often the case. The work here considers
group differences in terms of feature/group co-occurrence statistics;
however, most features do occur (albeit at different frequencies) in
multiple groups, and traditional morphometric analysis on an
individual feature basis is a logical next step in further characterizing
group differences. In terms of FBM theory, the model could be adapted
to account for disease progression in longitudinal studies, to aid in
understanding the neuroanatomical basis for progression from mild
cognitive impairment to AD for instance. Thresholds on permissible
geometrical error ey and ¢ are currently fixed to reasonable empirical
values. Experimentally, the same significant group-related model
features are consistently identified using larger thresholds (e.g.,
ex=1.0, e,=1n 1.8); however, they tend to become fragmented for
lower thresholds (e.g., below &x=0.4, e,=1In 1.4). Optimal values
could potentially be estimated automatically from data, and it is
possible that spatially varying threshold may offer improved
modeling, e.g., allowing for greater geometrical variability in the
cortex. Many different types of scale-invariant features other than
DOG features have been developed; these could be incorporated into
FBM to discover a greater variety of group-related anatomical patterns
and to improve classification. Finally, a future experiment will be to
assess the repeatability of features identified in different FBM models
trained on independent image sets; this will require a principled
means of comparing sets of model features derived from different
data sets.

Appendix A. Details of SVM experiments

SVM classification trials were performed on random training/
testing set divisions of the OASIS data, with images preprocessed
using Gaussian-smoothing with blurring kernels of standard devia-
tion (0, 1, 2, 4 voxels). RBF and Linear SVM kernels were tested. The
Linear SVM kernel is defined by a single parameter C relating to the
error margin, the RBF kernel is defined by parameters C (as in the
Linear kernel) and 7y which controls the width of the kernel.
Exhaustive searches were performed in order to determine optimal
parameter values. Classification was unsuccessful; the SVM was not
capable of learning a viable decision boundary and in all trials
defaulted to guessing the most frequent group label in the training set.
A maximum classification rate of ~0.5 was thus obtained here for
approximately equal numbers of AD and NC test subjects.
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